

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Dokü	man Kodu	MF.FR.003
Y	ayın Tarihi	06.09.2024
Re	vizyon No	0
Reviz	yon Tarihi	0
Gi	zlilik Sınıfı	Hizmet ici

CHEM 102 – ENGINEERING CHEMISTRY II						
Course Code	e Course Name Semester				ester	
CHEM 102	ENGINEERING CHEMISTRY II			Fall $oxtimes$ Spring $oxtimes$ Summer $oxtimes$		
Hours				Credit	ECTS	
Theory		Practice	Lab		2	2
2		0	0		۷	3

Course Details	
Department	Nanotechnology Engineering
Course Language	English
Course Level	Undergraduate ⊠ Graduate □
Mode of Delivery	Face to Face ⊠ Online □ Hybrid □
Course Type	Compulsory ⊠ Elective □
Course Objectives	The aim of this course is to provide students with a deeper understanding of chemical systems, emphasizing thermodynamics, chemical equilibrium, kinetics, and the chemistry of elements. It will enable students to analyze real-world chemical phenomena, apply quantitative reasoning, and understand the role of chemistry in living systems and industrial applications.
Course Content	This course covers entropy and Gibbs free energy to understand why reactions occur; properties of solutions; chemical equilibrium; acids and bases; acid–base equilibria; solubility and complex-ion equilibria; reaction rates and chemical kinetics; main-group elements in Groups 1, 2, 13, 14, 15, 16, 17, and 18; transition elements; complex ions and coordination compounds; nuclear reactions; and the role of chemistry in living systems.
Course Method/ Techniques	Lecture ⊠ Question & Answer ⊠ Presentation ⊠ Discussion ⊠
Prerequisites/ Corequisites	CHEM 101
Work Placement(s)	No

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman Kodu	MF.FR.003
Yayın Tarihi	06.09.2024
Revizyon No	0
Revizyon Tarihi	0
Gizlilik Sınıfı	Hizmet içi

Textbook/References/Materials

Main Textbook:

Petrucci, R.H., Herring, F.G., Madura, J.D., Bissonnette, C. (General Chemistry: Principles and Modern Applications), Pearson Education, 12th edition.

Supplementary References:

- Zumdahl, S.S., Zumdahl, S.A. (Chemistry)
- Chang, R., Goldsby, K. (Chemistry) Atkins, P., Jones, L. (Chemical Principles)

Course Category					
Mathematics and Basic Sciences	\boxtimes		Education		
Engineering	\boxtimes		Science	\boxtimes	
Engineering Design			Health		
Social Sciences			Profession		

Weekl	y Schedule	
No	Topics	Materials/Notes
1	Spontaneous Change- Entropy and Gibbs Free Energy: Entropy, 2nd Law of Thermodynamics, ΔG , spontaneity	Chapter 13
2	Solutions and Their Physical Properties: Concentration units, colligative properties, vapor pressure	Chapter 14
3	Chemical Kinetics I: Reaction rates, rate laws, experimental data analysis	Chapter 15
4	Chemical Kinetics II: Mechanisms, rate-determining steps, Arrhenius equation	Chapter 15
5	Principles of Chemical Equilibrium: K _e q, Q, Le Chatelier's Principle, equilibrium calculations	Chapter 16
6	Acids and Bases: Strong/weak acids-bases, pH, buffers, titrations	Chapter 17,18
7	Solubility and Complex-Ion Equilibria: Ksp, common ion effect, selective precipitation, complex ions	Chapter 19
8	Midterm Exam	
9	Main-Group Elements I – Groups 1, 2, 13, and 14: Periodic trends, reactivity, oxides, hydrides	Chapter 21
10	Main-Group Elements II – Groups 15, 16, 17, 18, and Hydrogen: Oxoacids, halides, allotropes, redox behavior	Chapter 22
11	Transition Elements: Properties, Oxidation States, and Applications	Chapter 23
12	Complex Ions and Coordination Chemistry: Ligands, geometries, nomenclature, crystal field theory	Chapter 24

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman Kodu	MF.FR.003
Yayın Tarihi	06.09.2024
Revizyon No	0
Revizyon Tarihi	0
Gizlilik Sınıfı	Hizmet içi

13	Nuclear Chemistry — Radioactivity, decay types, half-life, nuclear reactions	Chapter 25
14	Chemistry of Biological Molecules: Carbohydrates, proteins, nucleic acids, chemical structure	Chapter 28
15	Review and Exam Preparation	
16	Final Exam	

Assessment Methods and Criteria				
In-term studies	Quantity	Percentage		
Attendance				
Lab				
Practice				
Fieldwork				
Course-specific internship				
Quiz/Studio/Criticize	2	10%		
Homework				
Presentation / Seminar				
Project				
Report				
Seminar				
Midterm Exam	1	40%		
Final Exam	1	50%		
	Total	100%		
Contribution of Midterm Studies to Success Grade		50%		
Contribution of End of Semester Studies to Success Grade		50%		
·	Total	100%		

ECTS Allocated Based on Student Workload				
Activities	Quantity	Duration (Hrs)	Total Workload	
Course Hours	14	2	28	
Lab				
Practice				
Fieldwork				
Course-specific Work Placement				
Out-of-class study time	14	1	14	
Quiz/Studio/Criticize	2	4	8	
Homework				
Presentation / Seminar				
Project				
Report				
Midterm Exam and Preparation for Midterm	1	10	10	
Final Exam and Preparation for Final Exam	1	15	15	

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman Kodu	MF.FR.003
Yayın Tarihi	06.09.2024
Revizyon No	0
Revizyon Tarihi	0
Gizlilik Sınıfı	Hizmet içi

Total Workload	75
Total Workload / 25	75/25
ECTS Credit	3

Course Learning Outcomes								
No	Outcome							
L1	Explain thermodynamic concepts such as entropy and Gibbs free energy							
L2	Analyze chemical equilibria including acid-base, solubility, and complex-ion equilibria							
L3	Interpret and predict reaction rates and mechanisms using chemical kinetics							
L4	Describe chemical and physical properties of main-group and transition elements							
L5	Apply chemical principles to biological systems and nuclear chemistry							

Con	Contribution of Course Learning Outcomes to Program Competencies/Outcomes													
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant														
	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	Total		
L1	5	4	1	2	2	1	1	2	1	1	1			
L2	5	5	2	3	4	2	2	2	1	1	2			
L3	5	5	2	3	4	2	2	2	1	1	2			
L4	5	4	2	2	2	2	2	3	1	1	2			
L5	5	4	2	3	3	2	2	3	1	2	4			
Total														