

Dokü	man Kodu	MF.FR.003
Y	ayın Tarihi	06.09.2024
Re	vizyon No	0
Reviz	yon Tarihi	0
Gi	zlilik Sınıfı	Hizmet ici

NE202 - MATERIAL SCIENCE II					
Course Code	Course Name Semester				
NE 202	MATERIAL SCIENCE II		Fall □ Spring ⊠ Summer □		
Hours		Credit	ECTS		
Theory		Practice	Lab	4	6
3		0	2	7	0

Course Details	
Department	Nanotechnology Engineering
Course Language	English
Course Level	Undergraduate ⊠ Graduate □
Mode of Delivery	Face to Face ⊠ Online □ Hybrid □
Course Type	Compulsory ⊠ Elective □
Course Objectives	The objective of this course is to to deepen students' understanding of advanced material classes such as ceramics, polymers, composites, and their mechanical, thermal, and electrical properties and applications.
Course Content	This course covers the structures, properties, and applications of ceramics and polymers; composites; electrical, thermal, magnetic, and optical properties of materials; corrosion and degradation; materials selection and sustainability.
Course Method/ Techniques	Lecture ⊠ Question & Answer ⊠ Presentation ⊠ Discussion ⊠
Prerequisites/ Corequisites	No
Work Placement(s)	No

Doküman Kodu	MF.FR.003
Yayın Tarihi	06.09.2024
Revizyon No	0
Revizyon Tarihi	0
Gizlilik Sınıfı	Hizmet içi

Textbook/References/Materials

Textbook: Callister, W.D., & Rethwisch, D.G. (2018). *Materials Science and Engineering: An Introduction* (10th ed.). Wiley.

References:

Smith, W.F., & Hashemi, J. (2010). *Foundations of Materials Science and Engineering* (5th ed.). McGraw-Hill.

Askeland, D.R., & Wright, W.J. (2015). *The Science and Engineering of Materials* (7th ed.). Cengage Learning.

Course Category				
Mathematics and Basic Sciences	\boxtimes		Education	
Engineering	\boxtimes		Science	\boxtimes
Engineering Design			Health	
Social Sciences			Profession	\boxtimes

Weekl	Weekly Schedule				
No	Topics	Materials/Notes			
1	Review of Crystal Structures and Phases:	Callister, Chapter 3, 9			
	Review unit cells, crystal systems, Miller indices; introduction to solid				
	solutions, phase equilibria, phase diagrams; transition from metallic to				
	non-metallic materials.				
2	Ceramic Structures and Bonding: Ceramic crystal structures; ionic	Callister, Chapter 12			
	bonding and charge neutrality; defects in ceramics; mechanical				
	behavior and brittleness; fracture and toughness.				
3	Properties of Ceramics: Mechanical behavior (brittleness, fracture	Callister, Chapter 12			
	toughness); thermal properties; electrical and optical behavior of				
	ceramics.				
4	Applications and Processing of Ceramics: Fabrication methods	Callister, Chapter 13			
	(glass forming, sintering, powder pressing); advanced applications				
	(bioceramics, magnetic ceramics, superconductors).				
5	Polymer Structures: Polymerization mechanisms; chain structures	Callister, Chapter 14			
	(linear, branched, crosslinked, network); molecular weight; polymer				
	crystallinity and configuration.				
6	Properties of Polymers: Stress-strain behavior; viscoelasticity;	Callister, Chapter 15			
	temperature effects (Tg, Tm); comparison with metals and ceramics.				
7	Applications and Processing of Polymers: Processing methods	Callister, Chapter 15			
	(extrusion, injection molding); recycling; degradation mechanisms;				
	common engineering polymer families.				

Doküman Kodu	MF.FR.003
Yayın Tarih	06.09.2024
Revizyon No	0
Revizyon Tarih	i 0
Gizlilik Sınıf	Hizmet içi

8	Midterm Exam	
9	Introduction to Composite Materials: Types (particle-reinforced,	Callister, Chapter 16
	fiber-reinforced, structural); matrix materials; reinforcement	
	mechanisms; rule of mixtures.	
10	Processing and Applications of Composites: Composite	Callister, Chapter 16
	fabrication methods (lay-up, pultrusion, resin transfer molding);	
	applications in aerospace, automotive, bioengineering.	
11	Corrosion of metals: Electrochemical corrosion, galvanic series,	Callister, Chapter 22
	localized corrosion types, prevention methods.	
12	Degradation of Polymers: Environmental degradation, UV and	Callister, Chapter 22
	thermal effects, bio-degradation	
13	Materials Selection and Design: Criteria for materials selection;	Callister, Chapter 23
	performance indices; Ashby charts; material indices for stiffness,	
	strength, cost, sustainability.	
14	Sustainable Materials and Future Trends: Eco-friendly materials,	Callister, Chapter 23
	life-cycle analysis; materials for energy (batteries, fuel cells, solar	
	cells); biodegradable polymers; emerging trends (e.g., nanomaterials,	
	smart materials).	
15	Final Review and Problem Solving	Covers Weeks 9–15
16	Final Exam	

Assessment Methods and Criteria		
In-term studies	Quantity	Percentage
Attendance		
Lab	4	15%
Practice		
Fieldwork		
Course-specific internship		
Quiz/Studio/Criticize	2	10%
Homework		
Presentation / Seminar		
Project		
Report		
Seminar		
Midterm Exam	1	25%
Final Exam	1	50%
	Tota	100%
Contribution of Midterm Studies to Success Grade		50%
Contribution of End of Semester Studies to Success Grade		50%
	Tota	100%

Doküman Kodu	MF.FR.003
Yayın Tarihi	06.09.2024
Revizyon No	0
Revizyon Tarihi	0
Gizlilik Sınıfı	Hizmet içi

ECTS Allocated Based on Student Workload				
Activities	Quantity	Duration (Hrs)	Total Workload	
Course Hours	14	3	42	
Lab	4	2	8	
Practice				
Fieldwork				
Course-specific Work Placement				
Out-of-class study time	14	3	42	
Quiz/Studio/Criticize	2	7	14	
Homework				
Presentation / Seminar				
Project				
Report				
Midterm Exam and Preparation for Midterm	1	20	20	
Final Exam and Preparation for Final Exam	1	24	24	
Total Workload			150	
Total Workload / 25			150/25	
ECTS Credit			6	

Cou	rse Learning Outcomes
No	Outcome
	Describe the structures, properties, and applications of advanced materials including ceramics,
L1	polymers, and composites.
12	Analyze the relationships between processing, structure, properties, and performance for non-
L2	metallic engineering materials.
12	Compare and evaluate the electrical, thermal, magnetic, and optical properties of different
material classes.	
	Identify mechanisms of material degradation such as corrosion and propose appropriate
L4	prevention strategies.
	Apply principles of materials selection in engineering design based on performance and
L5	sustainability criteria.

										/Outcon / Significa		
	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	
L1	5	4	3	4	3	2	2	3	3	2	2	
L2	5	5	3	3	3	2	2	3	2	2	2	
L3	4	5	4	4	3	3	3	4	3	3	2	
L4	3	4	5	5	4	3	4	5	4	4	3	
L5	2	3	4	5	4	4	4	5	5	5	4	
	'		•			•				•	Total	